BlockWRK SMART CONTRACT AUDIT
REPORT

£ Quilhash

Quill-SCSAP

Smart Contract Security Audits Platform

by Quill Audits, October 2018

Introduction

This Audit Report highlights the overall security of BlockWRK Smart Contracts. With
this report, we have tried to ensure the reliability of their smart contract by

complete assessment of their smart contract codebase.

Auditing Approach and Methodologies applied -

Quillhash team has performed thorough testing of the project starting with
analysing the code design patterns in which we reviewed the smart contract
architecture to ensure it is structured and safe use of third party smart contracts

and libraries.

Our team then performed a formal line by line inspection of the Smart Contract in
order to find any potential issue like race conditions, transaction-ordering

dependence, timestamp dependence, and denial of service attacks.

In the Unit testing Phase we coded/conducted Custom unit tests written for each
function in the contract to verify that each function works as expected. In
Automated Testing, We tested the Smart Contract with our in-house developed

tools to identify vulnerabilities and security flaws.

The code was tested in collaboration of our multiple team members and this
included -

1. Testing the functionality of the Smart Contract to determine proper logic has
been followed throughout

2. Analyzing the complexity of the code by thorough, manual review of the code,
line-by-line

3. Deploying the code on testnet using multiple clients to run live tests

www.quillhash.com

http://www.quillhash.com/

4. Analysing failure preparations to check how the Smart Contract performs in
case of bugs and vulnerabilities
5. Checking whether all the libraries used in the code are on the latest version

6. Analyzing the security of the on-chain data

Summary of BlockWRK Smart Contracts:-

BlockWRK contracts are customised ERC20 with following added functionality:-

o Taxed Token variation on the standard ERC20 transfer function (from
OpenZeppelin) to impose a variable transaction fee on each token transfer
that occurs outside of the BlockWRK application environment.

o Transaction Handler function that allows users to send tokens within and
also outside of the BlockWRK application without the need to hold Ether for
paying gas costs.

o Internal Token Purchase function that allows for a variable fee to charged
when users load their wallets with tokens from the Distribution Pool.

o Internal Token Distribution function that allows the Application to
distribute tokens for Proof-of-WRK and other administrative token transfers.

o In-App Purchases function that has variable rates for Users and business
accounts to purchase WRK without needing to buy from an external

cryptocurrency exchange.

It also contain an contract to create sub-admins or sub-owners which can be
authorised and removed only by owner of the contract.

Contracts also contains an ico contract to distribute tokens in different tiers
according to the rate of on-going tier.

www.quillhash.com

http://www.quillhash.com/

Security Level references

Every issue in this report was assigned a severity level from the
following:

High severity issues will probably bring problems and should be
fixed.

severity issues could potentially bring problems and
should eventually be fixed.

severity issues are minor details and warnings that can
remain unfixed but would be better fixed at some point in the
future.

www.quillhash.com

http://www.quillhash.com/

High severity issues:-

No high severity issues are found.

1. Approval racing condition:- The standard ERC20 implementation contains a
widely-known racing condition in its approve function, wherein a spender is able to
witness the token owner broadcast a transaction altering their approval, and
quickly sign and broadcast a transaction using transferFrom to move the current
approved amount from the owner's balance to the spender. If the spender’s
transaction is validated before the owner's, the spender is able to spend their entire
approval amount twice.

Line no 155:- approve() has a race condition problem.

approve() doesn’t check if the value of allowance is equal to 0 before performing
operation.

We recommend disabling users from calling this function if the value of allowance is
not equal to 0.

We also recommend adding this code before performing operation:

require((_value == 0) | | (allowed[msg.sender][_spender] == 0));

Status : Fixed

2. Negative tokens approval :- Contract should not be able to approve negative
value tokens but this test case is failing.
Add:
require((_value == 0) | | (allowed[msg.sender][_spender] == 0));
if(allowed[msg.sender][_spender] == 0){

require(_value > 0);

allowed[msg.sender][_spender] = _value;

emit Approval(msg.sender, spender, value);

return true;

else {

www.quillhash.com

http://www.quillhash.com/

allowed[msg.sender][_spender] = _value;
emit Approval(msg.sender, spender, value);
return true;

Status : Fixed

3. Wrong numAuthorized value:- It should be checked before removing an
address from authorized list that the address is already authorised.If address is not
already authorised and owner will try to remove the address then it will decrement
the numAuthorized value but actual number of authorised addresses are greater
than numAuthorized.

Status : Fixed

(It is demonstrated in unit test cases of authorizable contract.)

1. Solidity version must be fixed(Always use latest Version).

It should not
It should be

Status : Fixed
2. keccak256 encoding behavior

Before ABI encoding functions were introduced, keccak function accepts multiple
arguments like
=> keccak256("AAAA", "BBBB", 42);

It has been implicitly doing encodePacked. But now if you try calling keccak with
those, you are likely to get a compiler warning.

Warning:-This function only accepts a single "bytes" argument

www.quillhash.com

http://www.quillhash.com/

To remove these warning, replace following lines:-

Line 82 :- keccak256(_to, value, fee, nonce);

Line 94:- keccak256("\x19Ethereum Signed Message:\n32", _hash);
With:- keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", _hash));
Unit Testing

Test Suite

1. Contract: Authorizable

Passed Test cases:

Contract: authorizable contract

v should have an owner which is msg.sender (146ms)

v should allow owner to add authorised address (126ms)
v should allow increment numAuthorized (56ms)

v should allow owner to remove authorised address and decrement
numAuthorized (59ms)

www.quillhash.com

http://www.quillhash.com/

v should not increment numAuthorised ,if owner is adding an address which is
already authorised (89ms)

v should prevent non-owners from adding (102ms)
v should prevent non-owners from removing (97ms)

v should not decrement numAuthorised ,if owner is removing an address which is

not authorised

2. Contract: Taxed contract

v should be able transfer token with taxed fee

v should be able approve tokens and transfer tokens

v should revert if balance of sender is less than transfer amount

v should revert if balance of sender is less than transferFrom amount
v should revert if spender does not have enough approved allowance

v should not transfer negative token amount

v should not be to able approve negative tokens

v/ should not allow an owner to approve tokens to spender before setting allowance to

Zero

www.quillhash.com

http://www.quillhash.com/

3. Contract: BlockWRK tokens contract

v should initialize constructor (156ms)

v should be able to distribute inAppTokens by authorised address (103ms)

v should be able to distribute inAppTokens to inAppPurchaseWallet address
(82ms)

v should not able to distribute inAppTokens by unAuthorised address

v should not able to distribute inAppTokens more than distributionPool
v should not able to distribute inAppTokens more than distributionPool
v should be able to set new tax rate

v non owner should not be able to change tax rate

v authorised address should be able to do inAppTokenPurchase (119ms)
v emits the transfer event on inAppPurchase

v reverts when receipient address is zero inApp token Purchase

v emits the transfer event on inAppDistribution (41ms)

v should not able to use inAppPurchase by unAuthorised address

v should not able to do inAppPurchase more than purchase wallet balance
v should not able to do inAppPurchase with negative tokens passed

v should be able to handle transactionHandler (322ms)

www.quillhash.com

http://www.quillhash.com/

10

v should be able to handle transactionHandler if sender is unAuthorised
v should be able to handle transactionHandler if balance is less

v should be able to handle transactionHandler if signature is wrong

4. Contract: BlockWRKICO

v Crowdsale should be ended only after end
v should reach cap if cap sent

v when the beneficiary is not the zero address when the wei amount is not zero
when the total wei raised is less than the hardcap and when the crowdsale is open

v should show correct tokens remaining in current tier

v transfers funds to the salesWallet

v emits the purchase events

v/ reverts when the amount sent plus the wei raised is more than the hardcap.
v reverts when the wei amount is zero

v reverts when the beneficiary is the zero address
transfer remaining tokens after the sale

v transfers the remaining tokens to the distribution pool wallet,when available
tokens is greater than zero,when sender is the owner and when the crowdsale has

ended

v emits the closeout sale event (42ms), when available tokens is not greater than
zero

v Should reverts when the crowdsale has not ended

www.quillhash.com

http://www.quillhash.com/

11

v Should reverts when the sender is not the owner

Final Result of Test:

v 49 passing

X 0 failing

Implementation Recommendations

=> Contract does not have much functionality to track nonce of preSigned
transactions.According to ERC865, nonce is the number of presigned transactions
sent from contract. So there should be a function to get the nonce for build new
transaction on frontend.

=> There should be a function to pause the sale and transfer function in case of any
bug arises in future.Pause function will be helpful to prevent the loss.

=> Similar to _transferPreSigned(), a function to approve tokens can be added so
that users can also use transferFrom() function without paying fee in gas.

Comments:

Overall, the code is clearly written, and demonstrates effective use of abstraction,
separation of concerns, and modularity. BlockWRK development team
demonstrated high technical capabilities, both in the design of the architecture and
in the implementation.

We would like to recommend that BlockWRK team continue with the process of
securing their code by posting public bug bounties and soliciting community
feedback. It would be better to conduct public bounties if possible because the
ERC-865 is still not a finalized standard .

www.quillhash.com

http://www.quillhash.com/

